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Abstract. A procedure is proposed to calculate the Talmi-Moshinsky coefficients of an 
N-body system with arbitrary masses by using those of its subsystems. 

1. Introduction 

The Talmi-Moshinsky coefficient (TMC) (Talmi 1952, Moshinsky 1959, Tobocman 
1981) is a powerful tool in the calculation of few-body problems. The explicit expression 
of TMC is very complicated (Tobocman 1981, Gan el a1 1985) and it becomes much 
more complicated when the number of particles increases. On the other hand, due to 
the great progress in computer science, the calculation of the N-body problem with 
N 2 5 (Bao and Lim 1987) is gradually entering into the schedule of few-body physicists. 
Hence, it is desirable to find a relatively convenient way to obtain the TMC for N-body 
systems. Since a direct derivation of these coefficients is tedious, we will instead use 
an iterative procedure, i.e. to obtain the N-body TMC by using those of its subsystems. 
In this procedure, the three-body TMC will play a role as a basic building block. As 
a first step, we will show in the next section how the four-body TMC is calculated by 
using those of the three-body systems. 

2. Three-body and four-body systems 

The TMC are the transformation brackets which relate the harmonic oscillator ( HO) 

product states having different sets of Jacobi coordinates (JCO) as arguments. In a 
three-body system, let &p, 52” be the mass-weighted JCO of the a set and let p n r ( f )  
denote the HO wavefunction. Then the HO product states which may be used as basis 
functions in solving three-body problems can be written as 

( RI,,,(&: 1 (Pn*12(S2” )I1 (1) 

where I, and 1, are coupled to 1. In this expression and also in this paper, the widths 
of the HO wavefunctions are the same. 
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Let p denote another set of JCO. The &‘ and 62” are related to those of the p set 
by an orthogonal transformation as 

(2) 

Then the three-body TMC are defined by the following equations: 

In these equations, besides the total angular momentum 1, the energy and the parity 
are conserved, i.e. 

The explicit expression of the TMC U , , \ ~ I ~ ; ~ ? ( ~ )  and the program in FORTRAN for 
computing this coefficient can be found in the papers of Tobocman (1981) and Gan 
et al (1985). 

Let Lj: ( i  = 1 , 2 , 3 )  denote a set of mass-weighted JCO of a four-body system. Let 
the HO product states be denoted by 

where [k] denotes a set of quantum number: n , l ,  n212 n313 lo and L. 

three-dimensional orthogonal matrix A;. 

2( n,  + n 2 )  + I ,  + l2 = 2 ( n i  + n ; )  + I ;  + I ; .  (4) 
n l n l l  

@ [ k ] ( 6 ? )  (Pn,  I ,  ( f? )  ( ( P n , I , ( f z )  ( P n , I , ( f ~  ) ) l o ]  L ( 5 )  

Let gf belong to another set of JCO. These two sets are related to each other by a 

Then the four-body TMC are defined by 
@[k](f:) = c a!i’](A;)@[k’](&f)* ( 6 )  

[ k ’ l  

As before, the total angular momentum, the energy and the parity are conserved in ( 6 ) .  
It is evident that the Hamiltonian of the HO product states is conserved under a 

general orthogonal transformation. Thus, the concept of TMC can be generalised and 
can be considered as a representation of the O(3) group. A well known decomposition 
of the three-dimensional orthogonal matrix is 

A;=[A cos q ,  sin q, )(CO? -sin q2 cos s i n q 2  q2 l j ( l  cos q3 sin 773 ) (7) 

where A = detlA;(. Since A; does not represent a real rotation, we call q, , q2 and q3 
the quasi-Euler angles. In short, (7 )  is rewritten as 

-s inq,  cos q, -sin q3 cos q3 

4 = M T I M T 2 M m .  (8 )  

a[ijl(A;) = c a[:$( MTl)a~~~:,ll( Mv2)a[i:.]’( MT,). (9) 

With this decomposition, the TMC defined in equation ( 6 )  can be decomposed 
accordingly as 

[k”],  [k”’] 

The values of qi can be easily obtained from (7) as 

a , ,  cos q* = - 
A 

sin q2 = ( 1  - a : , ) ” 2  

where aV is an element of A;. 
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Thus there is no ambiguity in this decomposition. TMC associated with M,, in fact 
mainly associates only with a three-body subsystem. Thus we have 

(1 l a )  n l n l l  
ark! [ k  I (  M,,) = Ean:&n);y(Tl) 

with 

& = l  (if A = 1) 

In ( l l b )  the 6-j coefficients just arise from recoupling of angular momenta and 
io= (210+ 1)1'2. 

Inserting (1 la ) - ( l lc )  into (9) we have 

where we succeed in expressing the four-body TMC by those of three-body systems. 
In (12), the summations are restrained by the conservation of total angular momen- 

tum, energy and parity of each three-body TMC and by the rules of angular momentum 
coupling. 

This procedure can be generalised to an N-body system as follows. 

3. N-body system 

Let the HO product state of N-body system be denoted by 

@ [ k ] ( & 9 )  i=1 ,2 ,  . . . ,  N - 1  

and the TMC are defined by 

@ [ k ] ( 5 9 )  = c 4 ~ g A ; ) @ [ k , l ( 5 ! )  
[ k ' l  

where A; is an (N-1)-dimensional orthogonal matrix which is associated with a 
'rotation' in a ( N  - 1)-dimensional space. Suppose that in this 'rotation', the first base 
vector GI is rotated to *G\; then A; can be naturally decomposed as 

Ai =Mi 'M2 (15) 

where Mi2 represents a 'rotation' moving A,  to *A:  while M l  represents a successive 
'rotation' around the G: axes (maybe together with a reflection of the G:). 

There are different ways to define MI; however a convenient way is to decompose 
M2 as a product of N - 2 orthogonal matrices 

i = l  
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where the elements of M, denoted by mkl is equal to zero when k # 1, and equal to 
one when k = 1, besides m,, = m,,,,,,, =cos 8, and m ,  ,+' = -m,+' ,  I =sin 8,. The domain 
of the parameters e, is (0, T ) ;  that of O N - 2  is (0 ,2x) .  

On the other hand, M I  can be written as 

where B is a ( N  - 2)-dimensional orthogonal matrix with 

detlBl= + l  A = det/A;I. 

In M,, we have introduced N - 2  parameters; we also have (N-2 ) (N-3) /2  
parameters in B. In total we have ( N  - 1)( N - 2)/2 parameters; this is the right number 
to determine a ( N  - 1)-dimensional orthogonal matrix. Now, we are going to prove 
that all these parameters can be uniquely determined without ambiguity if all elements 
uij in A; are known. 

Equating the elements of the first row of both sides of ( 1 9 ,  we have 

U , ,  = A COS el 
U , ,  = A sin cos O2 

a', N - 2  = A sin 8,  sin 0,. . . sin cos e N - ,  
uI ,  N - l  = A sin 8,  sin O z .  . . sin sin O N - 2 .  

Since the domain of Bi is (0, T )  for i s  N - 3 ,  8' can be firstly uniquely determined as 

a , ,  
A 

e, = COS-' -. 

Then 

a12 

A sin 8, 
e, = COS-' - 

When 8, to O N - 3  are all known, we can determine O N - ,  by the last two equations of 
(18). In this way, we can uniquely determine M2. 

Once M2 is determined, we have 

This equation is sufficient to determine all unknowns in B. 
Now we have achieved a decomposition of A;. Accordingly, the N-body TMC as 

a representation of O( N - 1) groups can be decomposed in a way like ( 9 )  as 

d[:!l(AZ) = d ~ : l , ( M l ) d ~ : ~ ] ( M , ) .  (21) 
1k"I 

Since MI is essentially an element belonging to the O( N - 2) subgroup; thus S ~ [ : ~ ~ ( M , )  
is associated with the TMC of an N - 1 body system. Since M2 is a product of a series 
of elements each belonging to a O(2) subgroup. Thus dE::1](M2) is a product of a series 
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of three-body TMC. Thus, in this way we can express the TMC of a N-body system by 
those of its subsystems. (It should be remembered that there will be some additional 
coefficients such as the 6-j  and/or 9-j coefficients from angular momentum recouplings 
just as in equation (12) derived before). 

4. Examples of application and conclusion 

The N-body TMC can be extensively used in the calculation of few-body systems. Two 
examples of its application are given as follows. 

4.1. Calculation of matrix elements 

Let a state of channel a having the set f :  as arguments be expanded by a set of HO 

product states. Let another :tate of channel p having f f  as arguments be likewise 
expanded. Let the operator O(uy)  be concerned with only the degrees of freedom of 
a subsystem uy. Let y denote a set of JCO where U,. can be isolated (this implies that 
there is a JCO in y connecting the centre of mass of uy with the rest). Then the general 
matrix element 

can be calculated by rewriting it in a form using TMC as 

In the RHS of (23), the same set of coordinates appears in the integrand, greatly 
simplifying the calculation. 

4.2. To form basis functions with given symmetry 

In the case of an identical particle system, TMC can be used to compose basis functions 
having given permutation symmetry. Let S, denote a permutation of the particles 
which transforms the a set of JCO into the p set: 

S p ( f P )  = (59 .  (24) 

s @ @ [ k ] ( f ? )  = @ [ k l ( t f )  = d [ k ' l ( A ! ) @ [ k ' ] ( f : ) -  ( 2 5 )  

Accordingly, we have 

t k ' l  

Let Z, C,Sp be the associated projection operator of the given symmetry. Then 
the basis function having f ?  as arguments and having the desired symmetry is just 

In conclusion, we have proposed a procedure to calculate the TMC of a N-body 
system by using those of its subsystems. In this way, we succeed in avoiding using 
very complicated formulae arising from a direct derivation of those coefficients. Fur- 
thermore, this procedure holds for all N-body systems with arbitrary masses. 
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